Root vectors of polynomial and rational matrices: Theory and computation

نویسندگان

چکیده

The notion of root polynomials a polynomial matrix P(λ) was thoroughly studied in Dopico and Noferini (2020) [6]. In this paper, we extend such systematic approach to general rational matrices R(λ), possibly singular with coalescent pole/zero pairs. We discuss the related theory for coefficients an arbitrary field. As byproduct, obtain sensible definitions eigenvalues eigenvectors without any need assume that R(λ) has full column rank or eigenvalue is not also pole. Then, specialize complex field provide practical algorithm compute them, based on construction minimal state space realization then using staircase linearized pencil null as well given point λ0. If λ0 pole, it necessary apply preprocessing step removes pole while making possible recover vectors original matrix: case, study both relevant (over field) algorithmic implementation field), still realizations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational and Polynomial Matrices

where λ = s or λ = z for a continuousor discrete-time realization, respectively. It is widely accepted that most numerical operations on rational or polynomial matrices are best done by manipulating the matrices of the corresponding descriptor system representations. Many operations on standard matrices (such as finding the rank, determinant, inverse or generalized inverses, nullspace) or the s...

متن کامل

Theory and Computation of Covariant Lyapunov Vectors

Pavel V. Kuptsov ∗ and Ulrich Parlitz 3 Department of Instrumentation Engineering, Saratov State Technical University, Politekhnicheskaya 77, Saratov 410054, Russia Biomedical Physics Group, Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany Institute for Nonlinear Dynamics, Georg–August–Universität Göttingen, Am Fassberg 17, 37077 Göttingen, German...

متن کامل

Computation of Coprime Factorizations of Rational Matrices

We propose a numerically reliable state space algorithm for computing coprime factorizations of rational matrices with factors having poles in a given stability domain. The new algorithm is based on a recursive generalized Schur technique for poles dislocation by means of proportional-derivative state feedback. The proposed algorithm is generally applicable regardless the underlying descriptor ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2023

ISSN: ['1873-1856', '0024-3795']

DOI: https://doi.org/10.1016/j.laa.2022.10.013